top of page
Submitted

108. Kim, J.; Lim, T.; Hernández-Castillo, D.; Lim, J. S.; Park, J.; Kim, D.; Ryu, J.; Sa, Y. J.; Lee, J. H.; Hwang, Y. J.; Moon, H. R.; Exner, K.S.*; Joo, S. H. Identification of Ni–N4 Active Sites in Atomically Dispersed Ni Catalysts for Efficient Chlorine Evolution Reaction. 2025, submitted.


107. Lozano-Reis, P.; Exner, K.S.* Unveiling selectivity trends for CO2 reduction reaction over Ti3C2Tx MXene: The key role of less-stable intermediate states and coadsorbates. 2025, in revision.


106.Gyan-Barimah, C.; Dhaka, K.; Lee, H.-Y.; Wei, Y.; Maulana, M. I.; Yu, J.-H.; Yu, B.; Exner, K.S.*, Yu, J.-S. Breaking the Activity-Stability Relationship with a Structurally Ordered PtCa alloy: from Solution-Phase Synthesis to Enhanced Fuel Cell Performance. 2025, submitted.


105. Singh, D.; Razzaq, S.; Exner, K.S.* Steering Intrinsic Activity in Electrochemical Nitrogen Reduction Reaction by Coupling Catalytic Resonance Theory and Breaking Scaling Relation. 2025, in revision.


104. Zhang, W.; Song, Y.; Zhao, J.; Mendes, P. C. D.; Ontaneda, J.; Fan, L.; Xu, X.; Wang, L.; Lu, Y.; Červinka, C.; Exner, K.S.; Kozlov, S. M.; Li, J.; Mao, X. Unveiling spatiotemporal metal stripping cooperativity at single-ion, subparticle resolution. 2025, submitted.


103. Singh, D.; Bulatova, K.; Exner, K.S.* Strain Engineering of Mo2C MXene to Steer the Selectivity in the Nitrogen Reduction Reaction Toward Ammonia. 2024, in revision.


102. Usama, M.; Razzaq, S.; Hättig, C.; Exner, K.S.* Oxygen evolution reaction on IrO2(110) is governed by Walden-type mechanisms. 2024, in revision.

Preprint: https://doi.org/10.21203/rs.3.rs-4101847/v1

2025

101. Meng, L.; Vines, F.; Illas, F.; Exner, K.S.* Stability of Single-Atom Centers of MXenes under Anodic Polarization Conditions. J. Phys. Chem. C 2025, accepted.


100. Faridi, S.; Razzaq, S.; Singh, D.; Meng, L.; Vines, F.; Illas, F.; Exner, K.S.* Trends in Competing Oxygen and Chlorine Evolution Reactions over Single-Atom Centers of MXenes. J. Mater. Chem. A 2025, in press.

https://doi.org/10.1039/d5ta02220g


99. Singh, D.; Razzaq, S.; Faridi, S.; Exner, K.S.* Selective Nitrogen Reduction Reaction on Single-Atom Centers of Molybdenum-Based MXenes by Pulsing the Electrochemical Potential. Mater. Today 2025, in press.

https://doi.org/10.1016/j.mattod.2025.03.016


98. Hernández-Castillo, D.; Exner, K.S.* Iridium Nanoparticles Embedded in Ceria Set a New Benchmark for PEM Water Electrolyzers. Chem Catal. 2025, 5, 101355.

https://doi.org/10.1016/j.checat.2025.101355


97. Singh, D.; Razzaq, S.; Tayyebi, E.; Exner, K.S.* Selectivity Control in the Nitrogen Reduction Reaction over Mo2C MXene by a Nitrogen-Rich Environment. ACS Catal. 2025, 15, 5589-5600.

https://doi.org/10.1021/acscatal.4c04878


96. Tayyebi, E.; Exner, K.S.* Understanding Free-Energy Landscapes in Electrocatalysis: A Case Study on Nitrate Reduction over Au(111). ACS Electrochem. 2025, in press

https://doi.org/10.1021/acselectrochem.4c00210


95. Dhaka, K.; Exner, K.S.* Degree of Span Control to Determine the Impact of Different Mechanisms and Limiting Steps: Oxygen Evolution Reaction over Co3O4(001) as a Case Study. J. Catal. 2025, 443, 115970.

https://doi.org/10.1016/j.jcat.2025.115970


94. Shaldehi, T. J.; Rowshanzamir, S.; Exner, K.S.; Vines, F.; Illas, F. Conventional versus Unconventional Oxygen Reduction Reaction Intermediates on Single Atom Catalysts. ACS Appl. Mater. Interf. 2025, 17, 6450-6459.

https://doi.org/10.1021/acsami.4c23082


93. Usama, M.; Razzaq, S.; Exner, K.S.* Data-Driven Exploration of Design Criteria for Active and Selective Catalysts in the Nitrogen Oxidation Reaction. ACS Phys. Chem Au 2025, 5, 38-46.

https://doi.org/10.1021/acsphyschemau.4c00058


92. Razzaq, S.; Faridi, S.; Kenmoe, S.; Usama, M.; Singh, D.; Meng, L.; Vines, F.; Illas, F.; Exner, K.S.* MXenes Spontaneously Form Active and Selective Single-Atom Centers under Anodic Polarization Conditions. J. Am. Chem. Soc. 2025, 147, 161-168.

https://doi.org/10.1021/jacs.4c08518


91. Wu, T.; Dhaka, K.; Luo, M.; Wang, B.; Wang, M.; Xi, S.; Zhang, M.; Huang, F.; Exner, K.S.*; Lum, Y. Cooperative active sites on Ag2Pt3TiS6 enable efficient low temperature ammonia fuel cell catalysis. Angew. Chem. Int. Ed. 2025, 64, e202418691.

https://doi.org/10.1002/anie.202418691 


90. Kim, J.; Usama, M.; Exner, K.S.*; Joo, S. H. Renaissance of Chlorine Evolution Reaction: Emerging Theory and Catalytic Materials. Angew. Chem. Int. Ed. 2025, 64, e202417293.

https://doi.org/10.1002/ange.202417293

2024

89. Sokolov, M.; Doblhoff-Dier, K.; Exner, K.S.* Best practices of modeling complex materials in electrocatalysis, exemplified by oxygen evolution reaction on pentlandites. Phys. Chem. Chem. Phys. 2024, 26, 22359-22370.

https://doi.org/10.1039/D4CP01792G


88. Tayyebi, E.; Exner, K.S.* Refining Free-Energy Calculations for Electrochemical Reactions: Unveiling Corrections beyond Gas-Phase Errors for Solvated Species and Ions. J. Phys. Chem C 2024, 128, 13732-13742.

https://doi.org/10.1021/acs.jpcc.4c04130


87. Lau, K.; Zerebecki, S.; Pielsticker, L.; Hetaba, L.; Dhaka, K.; Exner, K.S.; Reichenberger, S.; Barcikowski, S. Fluoride Substitution: Quantifying Surface Hydroxyls of Metal Oxides with Fluoride Ions. Adv. Mater. Interfaces 2024, 11, 2400237.

https://doi.org/10.1002/admi.202400237


86. Sokolov, M.; Exner, K.S.* Is the *O vs. *OH scaling relation intercept more relevant than the *OOH vs. *OH intercept to capture trends in the oxygen evolution reaction? Chem Catal. 2024, 4, 101039.

https://doi.org/10.1016/j.checat.2024.101039


85. Tack, M.; Usama, M.; Kazamer, N.; Exner, K.S.; Brodmann, M.; Barcikowski, S.; Reichenberger, S. Continuous and scalable laser synthesis of atom clusters with tunable surface oxidation for electrocatalytic water splitting. ACS Appl. Energy Mater. 2024, 7, 4057-4067.

https://doi.org/10.1021/acsaem.4c00342


84. Exner, K.S.* Four Generations of Volcano Plots for Oxygen Evolution Reaction: Beyond Proton-Coupled Electron Transfer Steps? Acc. Chem. Res. 2024, 57, 1336-1345.

https://doi.org/10.1021/acs.accounts.4c00048


83. Sokolov, M.; Mastrikov, Y.A.; Bocharov, D.; Krasnenko, V.; Zvejnieks, G.; Exner, K.S.; Kotomin, E. A. Computational Study of Oxygen Evolution Reaction on Flat and Stepped Surfaces of Strontium Titanate. Catal. Today 2024, 432, 114609.

https://doi.org/10.1016/j.cattod.2024.114609


82. Shaldehi, T. J.; Meng, L.; Rowshanzamir, S.; Parnian, M. J.; Exner, K.S., Vines, F.; Illas, F. Computationally Screening Non-Precious Single Atom Catalysts for Oxygen Reduction in Alkaline Media. Catal. Today 2024, 431, 114560.

https://doi.org/10.1016/j.cattod.2024.114560


81. Razzaq, S.; Exner, K.S.* Why efficient bifunctional hydrogen electrocatalysis requires a change in the reaction mechanism. iScience 2024, 27, 108848.

https://doi.org/10.1016/j.isci.2024.108848


80. Meng, L.; Tayyebi, E.; Exner, K.S.*; Vines, F.; Illas, F. MXenes as Electrocatalysts for the CO2 Reduction Reaction: Recent Advances and Future Challenges. ChemElectroChem 2024, 11, e202300598.

https://doi.org/10.1002/celc.202300598


79. Exner, K.S.* Editorial Overview: Fundamental and Theoretical Electrochemistry (2024) Theoretical approaches for energy conversion on various time and length scales. Curr. Opin. Electrochem. 2024, 43, 101427.

https://doi.org/10.1016/j.coelec.2023.101427


78. Exner, K.S.* Toward data- and mechanistic-driven volcano plots in electrocatalysis. Electrochem. Sci. Adv. 2024, 4, e202200014.

http://dx.doi.org/10.1002/elsa.202200014


77. Exner, K.S.* Elementary reaction steps in electrocatalysis: theory meets experiment. In: Encyclopedia of Solid-Liquid Interfaces, Volume 3 (Eds. Prof. Dr. Gianlorenzo Bussetti, Prof. Dr. Klaus Wandelt), Elsevier, 2024, 65-92.

http://dx.doi.org/10.1016/B978-0-323-85669-0.00025-8

2023

76. Exner, K.S.* Importance of the Walden Inversion for the Activity Volcano Plot of Oxygen Evolution. Adv. Sci. 2023, 10, 2023055.

https://doi.org/10.1002/advs.202305505


75. Exner, K.S.* On the Importance of the Volcano Slope and Mechanistic Pathways to Comprehend Activity and Selectivity Trends in Electrocatalysis. ECS Trans. 2023, 112, 399-403.

http://dx.doi.org/10.1149/11204.0399ecst


74. Exner, K.S.* How data-driven approaches advance the search for materials relevant to energy conversion and storage. Mater. Today Energy 2023, 36, 101364.

https://doi.org/10.1016/j.mtener.2023.101364


73. Exner, K.S.* Combining Descriptor-Based Analyses and Mean-Field Modeling of the Electrochemical Interface to Comprehend Trends of Catalytic Processes at the Solid/ Liquid Interface. J. Energy Chem. 2023, 85, 288-290.

https://doi.org/10.1016/j.jechem.2023.06.025


72. Cho, J.; Lim, T.; Kim, H.; Meng, L.; Kim, J.; Lee, J. H.; Jung, G. J.; Vines, F.; Illas, F.; Exner, K.S.*; Joo, S. H.; Choi, C. H. Importance of Broken Geometric Symmetry of Single-Atom Pt Sites for Efficient Electrocatalysis. Nat. Comm. 2023, 14, 3233.

https://doi.org/10.1038/s41467-023-38964-x


71. Exner, K.S.* Standard-State Entropies and their Impact on the Potential-Dependent Apparent Activation Energy in Electrocatalysis. J. Energy Chem. 2023, 83, 247-254.

https://doi.org/10.1016/j.jechem.2023.04.020


70. Exner, K.S.* Importance of the volcano slope to comprehend activity and selectivity trends in electrocatalysis. Curr. Opin. Electrochem. 2023, 39, 101284.

https://doi.org/10.1016/j.coelec.2023.101284


69. Lopez, M.; Exner, K.S.*; Vines, F.; Illas, F. Theoretical Study of the Mechanism of the Hydrogen Evolution Reaction on the V2C MXene: Thermodynamic and Kinetic Aspects. J. Catal. 2023, 421, 252-263.

http://dx.doi.org/10.1016/j.jcat.2023.03.027


68. Exner, K.S.* On the mechanistic complexity of oxygen evolution: potential-dependent switching of the mechanism at the volcano apex. Mater. Horiz. 2023, 10, 2086-2095.

https://doi.org/10.1039/D3MH00047H


67. Exner, K.S.* On the concept of metal–hydrogen peroxide batteries: improvement over metal–air batteries? Energy Adv. 2023, 2, 522-529.

https://doi.org/10.1039/D3YA00002H


66. Exner, K.S.* Steering Selectivity in the Four-Electron and Two-Electron Oxygen Reduction Reactions: On the Importance of the Volcano Slope. ACS Phys. Chem Au 2023, 3, 190-198.

https://doi.org/10.1021/acsphyschemau.2c00054


65. Spellauge, M.; Tack, M.; Streubel, R.; Miertz, M.; Exner, K.S.; Reichenberger, S.; Barcikowski, S.; Huber, H. P.; Ziefuss, A. R. Photomechanical Laser Fragmentation of IrO2 Microparticles for the Synthesis of Active and Redox-Sensitive Colloidal Nanoclusters. Small 2023, 19, 2206485.

https://doi.org/10.1002/smll.202206485


64. Razzaq, S.; Exner, K.S.* Materials Screening by the Descriptor Gmax(η): The Free-Energy Span Model in Electrocatalysis. ACS Catal. 2023, 13, 1740-1758.

https://doi.org/10.1021/acscatal.2c03997


63. Sokolov, M.; Mastrikov, Y.A.; Zvejnieks, G.; Bocharov, D.; Krasnenko, V.; Exner, K.S.; Kotomin, E. A. First Principles Calculations of Hydrogen Evolution Reaction and Proton Migration on Stepped Surfaces of SrTiO3. Adv. Theory Simul. 2023, 6, 2200619.

https://doi.org/10.1002/adts.202200619


62. Exner, K.S.* Rapid Screening of Mechanistic Pathways for Oxygen-Reduction Catalysts. ChemCatChem 2023, 15, e202201222.

https://doi.org/10.1002/cctc.202201222


61. Exner, K.S.* Implications of the M-OO∙∙OO-M recombination mechanism on materials screening and the oxygen evolution reaction. J. Phys. Energy 2023, 5, 014008

https://doi.org/10.1088/2515-7655/aca82a


60. Lopez-Berbel, M.; Exner, K.S.*; Vines, F.; Illas, F. Computational Pourbaix Diagrams for MXenes: A Key Ingredient towards Proper Theoretical Electrocatalytic Studies. Adv. Theory Simul. 2023, 6, 202200217.

https://doi.org/10.1002/adts.202200217

2022

59. Exner, K.S.* On the Optimization of Nitrogen-Reduction Electrocatalysts: Breaking Scaling Relation or Catalytic Resonance Theory? ChemCatChem 2022, 14, e202200366.

https://doi.org/10.1002/cctc.202200366


58. He, T.; Exner, K.S.* Computational electrochemistry focusing on nanostructured catalysts: challenges and opportunities. Mater. Today Energy 2022, 28, 101083.

https://doi.org/10.1016/j.mtener.2022.101083


57. Exner, K.S.; Ivanova, A. Doxorubicin-peptide-gold nanoparticle conjugate as a functionalized drug delivery system: exploring the limits. Phys. Chem. Chem. Phys. 2022, 24, 14985-14992.

https://doi.org/10.1039/D2CP00707J


56. Exner, K.S.* Blickpunkt Nachwuchs: Theoretische Elektrokatalyse. Nachr. Chem. 2022, 70, 82-84.

https://doi.org/10.1002/nadc.20224125416


55. Razzaq, S.; Exner, K.S.* Statistical analysis of breaking scaling relations in the oxygen evolution reaction. Electrochim. Acta 2022, 412, 140125.

https://doi.org/10.1016/j.electacta.2022.140125


54. Exner, K.S.*; Lim, T.; Joo, S.H. Circumventing the OCl versus OOH scaling relation in the chlorine evolution reaction: Beyond dimensionally stable anodes. Curr. Opin. Electrochem. 2022, 34, 100979.

https://doi.org/10.1016/j.coelec.2022.100979


53. Razzaq, S.; Exner, K.S.* Method to Determine the Bifunctional Index for the Oxygen Electrocatalysis from Theory. ChemElectroChem 2022, 9, e202101603.

https://doi.org/10.1002/celc.202101603


52. Exner, K.S.* Beyond the thermodynamic volcano picture in the nitrogen reduction reaction over transition-metal oxides: Implications for materials screening. Chin. J. Catal. 2022, 43, 2871-2880.

https://doi.org/10.1016/S1872-2067(21)64025-1


51. Exner, K.S.* On the optimum binding energy for the hydrogen evolution reaction: How do experiments contribute? Electrochem. Sci. Adv. 2022, 2, e2100101.

https://doi.org/10.1002/elsa.202100101


50. Exner, K.S.* Why the microkinetic modeling of experimental tafel plots requires knowledge of the reaction intermediate’s binding energy. Electrochem. Sci. Adv. 2022, 2, e2100037.

https://doi.org/10.1002/elsa.202100037

2021

49. Exner, K.S.* Skalierungsbeziehungen in der Sauerstoffgasentwicklung: Fluch oder Segen? In: UNIKATE: Berichte aus Forschung und Lehre, Nr. 57 Katalyse: Alles andere als oberflächlich, (Eds. Prof. Dr. Malte Behrens, Prof. Dr. Matrin Muhler, Prof. Dr. Christoph Schulz), Universität Duisburg-Essen, Essen, 2021, pp. 132-137, ISBN: 978-3-934359-57-4.

https://doi.org/10.17185/duepublico/75364


48. Exner, K.S.* The electrochemical-step asymmetry index. MethodsX 2021, 8, 101590.

https://doi.org/10.1016/j.mex.2021.101590


47. Lim, T.; Kim, J.H.; Kim, J.; Baek, D.S.; Shin, T.J.; Jeong, H.Y.; Lee, K.-S.; Exner, K.S.*; Joo, S.H. General Efficacy of Atomically Dispersed Pt Catalysts for the Chlorine Evolution Reaction: Potential-Dependent Switching of the Kinetics and Mechanism. ACS Catal. 2021, 11, 12232-12246.

https://doi.org/10.1021/acscatal.1c03893


46. Exner, K.S.* Why the optimum thermodynamic free-energy landscape of the oxygen evolution reaction reveals an asymmetric shape. Mater. Today Energy 2021, 21, 100831.

https://doi.org/10.1016/j.mtener.2021.100831


45. Exner, K.S.* On the Lattice Oxygen Evolution Mechanism: Avoiding Pitfalls. ChemCatChem 2021, 13, 4066-4074.

https://doi.org/10.1002/cctc.202101049


44. Exner, K.S.* Why the breaking of the OOH versus OH scaling relation might cause decreased electrocatalytic activity. Chem Catal. 2021, 1, 258-271.

https://doi.org/10.1016/j.checat.2021.06.011


43. Kadyk, T.; Xiao, J.; Ooka, H.; Huang, J.; Exner, K.S.* Material and Composition Screening Approaches in Electrocatalysis and Battery Research. Front. Energy Res. 2021, 9, 699376.

https://doi.org/10.3389/fenrg.2021.699376


42. Ivanova, A.; Chesnokov, A.; Bocharov, D.; Exner, K.S.* A Universal Approach to Quantify Overpotential-Dependent Selectivity Trends for the Competing Oxygen Evolution and Peroxide Formation Reactions: A Case Study on Graphene Model Electrodes. J. Phys. Chem. C 2021, 125, 10413-10421.

https://doi.org/10.1021/acs.jpcc.1c03323


41. Ooka, H; Huang, J.; Exner, K.S.* The Sabatier Principle in Electrocatalysis: Basics, Limitations, and Extensions. Front. Energy Res. 2021, 9, 654460.

https://doi.org/10.3389/fenrg.2021.654460


40. Exner, K.S.* Why approximating electrocatalytic activity by a single free-energy change is insufficient. Electrochim. Acta 2021, 375, 137975.

https://doi.org/10.1016/j.electacta.2021.137975


39. Exner, K.S.*; Ivanova, A. Method to Construct Volcano Relations by Multiscale Modeling: Building Bridges between the Catalysis and Biosimulation Communities. J. Phys. Chem. B 2021, 125, 2098-2104.

https://doi.org/10.1021/acs.jpcb.1c00836


38. Exner, K.S.* Boosting the Stability of RuO2 in the Acidic Oxygen Evolution Reaction by Tuning Oxygen-Vacancy Formation Energies: A Viable Approach Beyond Noble-Metal Catalysts? ChemElectroChem 2021, 8, 46-48.

https://doi.org/10.1002/celc.202001465


37. Herrada, R.A.; Rodil, S.; Sepulveda-Guzman, S.; Manriquez, J.; Exner, K.S.; Bustos, E. Characterization of Ti electrodes electrophoretically coated with IrO2-Ta2O5 films with different Ir:Ta molar ratios. J. Alloys Compd. 2021, 862, 158015.

https://doi.org/10.1016/j.jallcom.2020.158015


36. Exner, K.S.* Hydrogen electrocatalysis revisited: Weak bonding of adsorbed hydrogen as design principle for active electrode materials. Curr. Opin. Electrochem. 2021, 26, 100673.

https://doi.org/10.1016/j.coelec.2020.100673

2020

35. Exner, K.S.* A Universal Descriptor for the Screening of Electrode Materials for Multiple-Electron Processes: Beyond the Thermodynamic Overpotential. ACS Catal. 2020, 10, 12607-12617.

https://doi.org/10.1021/acscatal.0c03865


34. Exner, K.S.* Design criteria for the competing chlorine and oxygen evolution reactions: avoid the OCl adsorbate to enhance chlorine selectivity. Phys. Chem. Chem. Phys. 2020, 22, 22451-22458.

https://doi.org/10.1039/D0CP03667F


33. Exner, K.S.* Recent Progress in the Development of Screening Methods to Identify Electrode Materials for the Oxygen Evolution Reaction. Adv. Funct. Mater. 2020, 30, 2005060.

https://doi.org/10.1002/adfm.202005060


32. Exner, K.S.* Paradigm change in hydrogen electrocatalysis: The volcano's apex is located at weak bonding of the reaction intermediate. Int. J. Hydrog. Energy 2020, 45, 27221-27229.

https://doi.org/10.1016/j.ijhydene.2020.07.088


31. Exner, K.S.; Ivanova, A. Identifying a gold nanoparticle as a proactive carrier for transport of a doxorubicin-peptide complex. Coll. Surf. B 2020, 194, 111155.

https://doi.org/10.1016/j.colsurfb.2020.111155


30. a) Exner, K.S.* Does a Thermoneutral Electrocatalyst Correspond to the Apex of a Volcano Plot for a Simple Two-Electron Process? Angew. Chem. Int. Ed. 2020, 59, 10236-10240.

https://doi.org/10.1002/anie.202003688

b) Exner, K.S.* Does a Thermoneutral Electrocatalyst Correspond to the Apex of a Volcano Plot for a Simple Two-Electron Process? Angew. Chem. 2020, 132, 10320-10324.

https://doi.org/10.1002/ange.202003688


29. Exner, K.S.* Overpotential-Dependent Volcano Plots to Assess Activity Trends in the Competing Chlorine and Oxygen Evolution Reactions. ChemElectroChem 2020, 7, 1448-1455.

https://doi.org/10.1002/celc.202000120


28. Exner, K.S.* Beyond Dimensionally Stable Anodes: Single-Atom Catalysts with Superior Chlorine Selectivity. ChemElectroChem 2020, 7, 1528-1530.

https://doi.org/10.1002/celc.202000224


27. Exner, K.S.* Universality in Oxygen Evolution Electrocatalysis: High-Throughput Screening and a Priori Determination of the Rate-Determining Reaction Step. ChemCatChem 2020, 12, 2000-2003.

https://doi.org/10.1002/cctc.201902363


26. Exner, K.S.* Beyond thermodynamic-based material-screening concepts: Kinetic scaling relations exemplified by the chlorine evolution reaction over transition-metal oxides. Electrochim. Acta 2020, 334, 135555.

https://doi.org/10.1016/j.electacta.2019.135555


25. Exner, K.S.* Electrolyte Engineering as a Key Strategy on the Way Towards a Sustainable Energy Scenario? ChemElectroChem 2020, 7, 594-595.

https://doi.org/10.1002/celc.201902009


24. Exner, K.S.* Comparison of the Conventional Volcano Analysis with a Unifying Approach: Material Screening based on a Combination of Experiment and Theory. J. Phys. Chem. C 2020, 124, 822-828.

https://doi.org/10.1021/acs.jpcc.9b10860


23. Exner, K.S.* Recent Advancements in ab initio Screening of Electrode Materials for Lithium-Ion Batteries. In: Lithium-Ion Batteries: Properties, Advantages and Limitations (Ed. C. Morneau), Nova Science Publishers Inc., N.Y., 2020, pp. 107-126, ISBN: 978-1-53616-845-7.

Link

2019

22. Exner, K.S.* Design Criteria for Oxygen Evolution Electrocatalysts from First Principles: Introduction of a Unifying Material-Screening Approach. ACS Appl. Energy Mater. 2019, 2, 7991-8001.

https://doi.org/10.1021/acsaem.9b01480


21. Exner, K.S.* Beyond the Traditional Volcano Concept: Overpotential-Dependent Volcano Plots Exemplified by the Chlorine Evolution Reaction over Transition-Metal Oxides. J. Phys. Chem. C 2019, 123, 16921-16928.

https://doi.org/10.1021/acs.jpcc.9b05364


20. Exner, K.S.*; Over, H. Beyond the Rate-Determining Step in the Oxygen Evolution Reaction over a Single-Crystalline IrO2(110) Model Electrode: Kinetic Scaling Relations. ACS Catal. 2019, 9, 6755-6765.

https://doi.org/10.1021/acscatal.9b01564


19. Exner, K.S.* Controlling Stability and Selectivity in the Competing Chlorine and Oxygen Evolution Reaction over Transition Metal Oxide Electrodes. ChemElectroChem 2019, 6, 3401-3409.

https://doi.org/10.1002/celc.201900834


18. Exner, K.S.* Activity-Stability Volcano Plots for Material Optimization in Electrocatalysis. ChemCatChem 2019, 11, 3234-3241.

https://doi.org/10.1002/cctc.201900500


17. Exner, K.S.* Is Thermodynamics a Good Descriptor for the Activity? Re-Investigation of Sabatier’s Principle by the Free Energy Diagram in Electrocatalysis. ACS Catal. 2019, 9, 5320-5329.

https://doi.org/10.1021/acscatal.9b00732


16. Exner, K.S.* Recent Advancements Towards Closing the Gap between Electrocatalysis and Battery Science Communities: The Computational Lithium Electrode and Activity-Stability Volcano Plots. ChemSusChem 2019, 12, 2330-2344.

https://doi.org/10.1002/cssc.201900298

2018

15. Exner, K.S.* Activity-Stability Volcano Plots for the Investigation of Nano-Sized Electrode Materials in Lithium-Ion Batteries. ChemElectroChem 2018, 5, 3243-3248.

https://doi.org/10.1002/celc.201800838


14. Exner, K.S.* A short perspective of modeling electrode materials in lithium-ion batteries by the ab initio atomistic thermodynamics approach. J. Solid State Electrochem. 2018, 22, 3111-3117.

https://doi.org/10.1007/s10008-018-4017-9


13. Simeonova, S.; Georgiev, P.; Exner, K.S.*; Mihaylov, L.; Nihtianova, D.; Koynov, K.; Balashev, K. Kinetic Study of Gold Nanoparticles Synthesized in the Presence of Chitosan and Citric Acid. Colloids Surf. A Physicochem. Eng. Asp. 2018, 557, 106-115.

https://doi.org/10.1016/j.colsurfa.2018.02.045


12. Exner, K.S.* Advanced Ab Initio Atomistic Thermodynamics for Lithium-Ion Batteries. In: Lithium-Ion Batteries: Materials, Applications and Technology (Eds. L. Castillo, G. Cook), Nova Science Publishers Inc., N.Y., 2018, pp. 217-238. ISBN: 978-1-53613-497-1.

Link


11. Exner, K.S.; Sohrabnejad-Eskan, I.; Over, H. A Universal Approach to Determine the Free Energy Diagram of an Electrocatalytic Reaction. ACS Catal. 2018, 8, 1864-1879.

https://doi.org/10.1021/acscatal.7b03142

2017

10. Exner, K.S.* Constrained Ab Initio Thermodynamics: Transferring the Concept of Surface Pourbaix Diagrams in Electrocatalysis to Electrode Materials in Lithium-Ion Batteries. ChemElectroChem 2017, 4, 3231-3237.

https://doi.org/10.1002/celc.201700754


9. Exner, K.S.; Sohrabnejad-Eskan, I.; Anton, J.; Jacob, T.; Over, H. Full Free Energy Diagram of an Electrocatalytic Reaction over a Single-Crystalline Model Electrode. ChemElectroChem 2017, 4, 2902-2908.

https://doi.org/10.1002/celc.201700687


8. Exner, K.S.; Over, H. Kinetics of Electrocatalytic Reactions from First-Principles: A Critical Comparison with the Ab Initio Thermodynamics Approach. Acc. Chem. Res. 2017, 50, 1240-1247.

https://doi.org/10.1021/acs.accounts.7b00077


7. Sohrabnejad-Eskan, I.; Goryachev, A.; Exner, K.S.; Kibler, L.; Hensen, E.J.M.; Hofmann, J.P.; Over, H. Temperature-Dependent Kinetic Studies of the Chlorine Evolution Reaction over RuO2(110) Model Electrodes. ACS Catal. 2017, 7, 2403-2411.

https://doi.org/10.1021/acscatal.6b03415

2016

6. a) Exner, K.S.; Anton, J.; Jacob, T.; Over, H. Full Kinetics from First Principles of the Chlorine Evolution Reaction over a RuO2(110) Model Electrode. Angew. Chem. Int. Ed. 2016, 55, 7501-7504.

https://doi.org/10.1002/anie.201511804

b) Exner, K.S.; Anton, J.; Jacob, T.; Over, H. Full Kinetics from First Principles of the Chlorine Evolution Reaction over a RuO2(110) Model Electrode. Angew. Chem. 2016, 128, 7627-7630.

https://doi.org/10.1002/ange.201511804

2015

5. Exner, K.S.; Heß, F.; Over, H.; Seitsonen, A.P. Combined experiment and theory approach in surface chemistry: Stairway to heaven? Surf. Sci. 2015, 640, 165-180.

https://doi.org/10.1016/j.susc.2015.01.006


4. Exner, K.S.; Anton, J.; Jacob, T.; Over, H. Ligand Effects and Their Impact on Electrocatalytic Processes Exemplified with the Oxygen Evolution Reaction (OER) on RuO2(110). ChemElectroChem 2015, 2, 707-713.

https://doi.org/10.1002/celc.201402430


3. Exner, K.S.; Anton, J.; Jacob, T.; Over, H. Microscopic Insights into the Chlorine Evolution Reaction on RuO2(110): a Mechanistic Ab Initio Atomistic Thermodynamics Study. Electrocatal. 2015, 6, 163-172.

https://doi.org/10.1007/s12678-014-0220-3

2014

2. a) Exner, K.S.; Anton, J.; Jacob, T.; Over, H. Controlling Selectivity in the Chlorine Evolution Reaction over RuO2-Based Catalysts. Angew. Chem. Int. Ed. 2014, 53, 11032-11035.

https://doi.org/10.1002/anie.201406112

b) Exner, K.S.; Anton, J.; Jacob, T.; Over, H. Controlling Selectivity in the Chlorine Evolution Reaction over RuO2-Based Catalysts. Angew. Chem. 2014, 126, 11212-11215.

https://doi.org/10.1002/ange.201406112


1. Exner, K.S.; Anton, J.; Jacob, T.; Over, H. Chlorine Evolution Reaction on RuO2(110): Ab initio Atomistic Thermodynamics Study – Pourbaix Diagrams. Electrochim. Acta 2014, 120, 460-466.

https://doi.org/10.1016/j.electacta.2013.11.027

Publication List of Prof. Dr. Kai S. Exner

Nomenclature

underlined: student of the Exner group or exchange student supervised by Prof. Exner

asterisk (*): Prof. Exner as corresponding author

bottom of page